Bioneer AccuNanoBead Thiol Magnetic Nanobeads, Size 400 nm (0.5 g)

SKU:
TA-1019-1
SHIPPING:
Piece
IF YOU ARE INTERESTED IN A QUOTE FOR A LARGE QUANTITY, PLEASE CONTACT US
Email: Marknanossr@gmail.com
or
Get A Quotation

Bioneer AccuNanoBead Thiol Magnetic Nanobeads, Size 400 nm (0.5 g)

Piece 1
Request a quotation.

Contact Us

Global Head Office

Email: Marknanossr@gmail.com

Tel:+86 15606950920

Wechat: 15606950920

Address:  Building 1, No. 39 Xinchang Road, Haicang District, Xiamen City, Fujian Province, China

Bioneer AccuNanoBead™ Thiol Magnetic Nanobeads, Size 400 nm (0.5 g)

Buy Bioneer products from NANOSSR at the best value.

Magnetic beads are used as materials for cell experiments, DNA purification and disease observation, and can also be used as materials for direct treatment. This AccuNanoBead™ have the advantages of high Binding Capacity due to their relatively large surface area because they are nano-sized.

Recently, there have been many researches applying magnetic beads in the field of biology: from cellular experiments and DNA purification to disease monitoring and even disease treatment. The surface of magnetic beads are coated with functional groups that allows binding of DNA, RNA, proteins, and specific cells. Afterwards, the beads are moved or attached to a desired position through external magnetic fields to perform purification. In addition, while conventional Magnetic Beads are micro-sized, this AccuNanoBeads™ is nano-sized, bearing the advantages of high binding capacity due to their relatively large surface area.

 

Features and Benefits

  • Miniscule size: Average sizes of 400 nm magnetic nanobeads 
  • Uniformed size distribution
  • Sphere form of silica coated magnetic nanobeads
  • Excellent protein purification efficiency
  • Rapid purification

 

Applications

  • Magnetic DNA/RNA Purification
  • Magnetic Protein Purification
  • Magnetic Biosimilar Separation
  • Magnetic Antibody Separation

 

Specifications

Protein Purification Method by using Magnetic Nanobeads

After loading the protein sample to the tube, add the magnetic beads to combine them. Afterwards, fix the beads by using external magnetic field and wash the solution. Finally, elute the DNA or RNA from the magnetic beads. This method provides faster DNA purification than traditional ones.

Figure 1

Figure 1. Recombinant Protein and Antibody protein purification protocol by Magnetic Nanobeads.

FE-SEM and TEM Images of Magnetic Nanobeads

Figure 2. FE-SEM picture of Magnetic Nanobeads. The electron microscope picture shows spherical magnetic nanobeads.

EDS Analysis of Magnetic Nanobeads

Figure 3

Figure 3. EDS analysis results of Magnetic Nanobeads. The results show that the Magnetic Nanobeads consist of silica and iron oxide.

Size Distribution of Magnetic Nanobeads

Figure 4

Figure 4. Particle size distribution of Magnetic Nanobeads. The average size of the Magnetic Nanobeads is about 400 nm.

Comparison of Protein Purification Beads

Figure 5.
(a) SEM image of 450 nm Bioneer Magnetic Nanobeads
(b) SEM image of A company  Magnetic Beads
(c) SEM image of B company  Magnetic Beads
(d) SEM image of C company  Magnetic Beads
(e) SEM image of D company  Magnetic Beads

Figure 5 shows scanning electron microscope images of magnetic beads from Bioneer and a different company (b~e). Scanning electron microscope image of synthesized magnetic nanobeads shows that magnetic nanobeads of Bioneer is 400 nm size and spherical shape. However, the magnetic beads from the other company are micro meter size and various shape.

Protein Purification Yield

Table 1 shows the protein purification yield of Bioneer Ni-NTA magnetic nanobeads. From these results, it can be seen that Bioneer magnetic nanobeads have a high protein purification yield of 77%. The protein used in the experiment was a 17kDa His-Tagged protein. The yield is the amount of target protein purified from the loading protein.

Table 1

Table 1. Protein purification yield of bioneer Ni-NTA magnetic nanobeads (30 mg).

Figure 6

Figure 6. SDS-PAGE image of purified 17 kDa His-tagged protein with Bioneer Ni-NTA magnetic nanobeads.

€ 4.00
GRAPHENE SHEET
Recent Posts

Future Communication with 5G Technology and Advanced Materials

Preserving History with the Power of Graphene
Future Communication with 5G Technology and Advanced Materials 5G technology opens the doors to a new era in communication with faster connection speeds, low late...

5G technology opens the doors to a new era in communication with faster connection speeds, low latency and wide coverage. This new generation technology enables important applications in many sectors...

​Graphite Applications on Anti-friction Coatings

Preserving History with the Power of Graphene
​Graphite Applications on Anti-friction Coatings Graphite is said to be known as one of the forms of carbon present in usually crystalline form. Thi...

Graphite is said to be known as one of the forms of carbon present in usually crystalline form. This too has various types and varieties in which graphite can be exhibited. However, recently it has c...

Cuprous (Copper) Oxide Properties and Applications

Preserving History with the Power of Graphene
Cuprous (Copper) Oxide Properties and Applications Cuprous oxide is also commonly known as copper oxide which is basically an inorganic compound compr...

Cuprous oxide is also commonly known as copper oxide which is basically an inorganic compound comprising of copper and oxygen. It has some excellent properties that enable it to surpass a lot of copp...

Cellulose Nanocrystals (CNC), Applications and Properties

Preserving History with the Power of Graphene
Cellulose Nanocrystals (CNC), Applications and Properties Cellulose is a very abundant polymer naturally available as it is a vital component present in vari...

Cellulose is a very abundant polymer naturally available as it is a vital component present in various plant cell walls. Besides, cellulose nanocrystals (CNC) also found in every other species all of...

Ketjen Black Applications As a Superconductor

Preserving History with the Power of Graphene
Ketjen Black Applications As a Superconductor Ketjen black is basically a conductive agent and conductive agents are usually used to make sure th...

Ketjen black is basically a conductive agent and conductive agents are usually used to make sure that the electrode possesses good charge and discharge performance. So ketjen black is responsible for...

​7 Reasons to Why Fullerenes are Growing Market

Preserving History with the Power of Graphene
​7 Reasons to Why Fullerenes are Growing Market Fullerene is a carbon allotrope consist of carbon atoms attached via single or double bonds.These m...

Fullerene is a carbon allotrope consist of carbon atoms attached via single or double bonds.These molecules have rich characteristics and potentially strong properties which enable them to work effec...

Molybdenum Disulfide (MoS2) Properties and Applications

Preserving History with the Power of Graphene
Molybdenum Disulfide (MoS2) Properties and Applications Molybdenum disulfide, also known as MoS2, is one of the best materials initially belonging to the t...

Molybdenum disulfide, also known as MoS2, is one of the best materials initially belonging to the transition metals.Its structure is unique hence all the properties it possesses are unique.  The buil...

From Graphene to the New Teflon

Preserving History with the Power of Graphene
From Graphene to the New Teflon Graphene is one of the most used materials in today's world and with all the exceptions that it is ...

Graphene is one of the most used materials in today's world and with all the exceptions that it is being used, it is being proven as one of the best materials for almost all industries.  Ever since i...

​Use of Graphene In The Textile Industry, Examples From The Market And Its Future

Preserving History with the Power of Graphene
​Use of Graphene In The Textile Industry, Examples From The Market And Its Future Graphene is known as a carbon allotrope in the industry as it comprises carbon atoms that are put t...

Graphene is known as a carbon allotrope in the industry as it comprises carbon atoms that are put together in the form of a lattice. Graphene is a highly necessary product in today's world as it is s...

IR Coating Technology and Applications

Preserving History with the Power of Graphene
IR Coating Technology and Applications IR coating technology is used for the optical coatings that perform their functions at a very large...

IR coating technology is used for the optical coatings that perform their functions at a very large scale. This includes UV wavelengths which are both short and long too. A lot of comprehensive studi...

Silicon Dioxide in Battery Applications

Preserving History with the Power of Graphene
Silicon Dioxide in Battery Applications Silicon dioxide is a promising material for next generation battery technologies because of its hig...

Silicon dioxide is a promising material for next generation battery technologies because of its high capacity and abundance. Especially Li-ion and Li-S batteries benefit from silicon dioxide and its ...

Properties of ​Ketjen Black as a Superconductor

Preserving History with the Power of Graphene
Properties of ​Ketjen Black as a Superconductor Ketjen black is basically a conductive agent and conductive agents are usually used to make sure th...

Ketjen black is basically a conductive agent and conductive agents are usually used to make sure that the electrode possesses good charge and discharge performance. So ketjen black is responsible for...

MoS2 Applications on Anti-friction Coatings

Preserving History with the Power of Graphene
MoS2 Applications on Anti-friction Coatings MoS2 is basically the chemical formula of molybdenum disulfide which is a compound known to be a tr...

MoS2 is basically the chemical formula of molybdenum disulfide which is a compound known to be a transition metal dichalcogenide having a blackish and silvery appearance. MoS2 is one of the categori...

​How to Sustainably Produce Nano Clays

Preserving History with the Power of Graphene
​How to Sustainably Produce Nano Clays Nanoclays, with their unique layered structure and nanometric size, are transforming industries by ...

Nanoclays, with their unique layered structure and nanometric size, are transforming industries by enhancing the performance of materials in packaging, automotive, and environmental engineering.  Th...

​10 Uses of Calcium Oxide in Daily Life

Preserving History with the Power of Graphene
​10 Uses of Calcium Oxide in Daily Life Calcium oxide is the chemical combination of calcium and oxygen subsequently forming a product that...

Calcium oxide is the chemical combination of calcium and oxygen subsequently forming a product that is rich in its characteristics and has an excellent set of properties that enable it to perform var...

​Cubic Boron Nitride Nanopowders: The New Diamond, Properties, and Applications

Preserving History with the Power of Graphene
​Cubic Boron Nitride Nanopowders: The New Diamond, Properties, and Applications Boron nitride is a chemical compound consisting of nitrogen and boron, having the chemical formula ...

Boron nitride is a chemical compound consisting of nitrogen and boron, having the chemical formula BN. It has various forms but the most common one is the cubic boron nitride form. It is actually a t...